Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Proofs of Some Generalized Mertens' Formulas Via Generalized Dickman Distributions (1809.04888v3)

Published 13 Sep 2018 in math.NT and math.PR

Abstract: The classical Mertens' formula states that $ \prod_{p\le N}\big(1-\frac1p){-1}\sim e\gamma\log N, $ where the product is over all primes $p$ less than or equal to $N$, and $\gamma$ is the Euler-Mascheroni constant. By the Euler product formula, this is equivalent to either of the following statements: $$ \begin{aligned} &i. \lim_{N\to\infty}\frac{\sum_{n:p|n\Rightarrow p\le N}\thinspace\frac1n}{\sum_{n\le N}\frac1n}=e\gamma\ \ &ii. \sum_{n:p|n\Rightarrow p\le N}\thinspace\frac1n\sim e\gamma\log N. \end{aligned} $$ Via some random integer constructions and a criterion for weak convergence of distributions to so-called generalized Dickman distributions, we obtain some generalized Mertens' formulas, some of which are new and some of which have been proved using number-theoretic tools. For example, in the spirit of (i), we show that if $A$ is a subset of the primes which has natural density $\theta\in(0,1]$ with respect to the set of all primes, then $$ \lim_{N\to\infty}\frac{\sum_{n:p|n\Rightarrow p\le N\thinspace\text{and}\thinspace p\in A}\frac1n} {\sum_{n\le N:p|n\Rightarrow p\in A}\frac1n}=e{\gamma\theta}\Gamma(\theta+1), $$ and also, for any $k\ge2$, $$ \lim_{N\to\infty}\frac{\sum{'(k)}_{n:p|n\Rightarrow p\le N\thinspace\text{and}\thinspace p\in A}\frac1n} {\sum{'(k)}_{n\le N:p|n\Rightarrow p\in A}\frac1n}=e{\gamma\theta}\Gamma(\theta+1), $$ where $\sum{'(k)}$ denotes that the summation is restricted to $k$-free positive integers. In the spirit of (ii), we show for example that $ \sum{'(k)}_{n:p|n\Rightarrow p\le N}\frac1{n_{{(k-1)-\text{free}}}\phi(n_{{(k-1)-\text{power}}})}\sim e\gamma\log N, $ where $\phi$ is the Euler totient function, and $n_{{(k-1)-\text{free}}}$ and $n_{{(k-1)-\text{power}}}$ are the $(k-1)$-free part and the $(k-1)$-power part of $n$.

Summary

We haven't generated a summary for this paper yet.