Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thick points of random walk and the Gaussian free field (1809.04369v2)

Published 12 Sep 2018 in math.PR

Abstract: We consider the thick points of random walk, i.e. points where the local time is a fraction of the maximum. In two dimensions, we answer a question of Dembo, Peres, Rosen and Zeitouni and compute the number of thick points of planar random walk, assuming that the increments are symmetric and have a finite moment of order two. The proof provides a streamlined argument based on the connection to the Gaussian free field and works in a very general setting including isoradial graphs. In higher dimensions, we study the scaling limit of the thick points. In particular, we show that the rescaled number of thick points converges to a nondegenerate random variable and that the centred maximum of the local times converges to a randomly shifted Gumbel distribution.

Summary

We haven't generated a summary for this paper yet.