Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The categorification of the Kauffman bracket skein module of $\mathbb{R}P^3$ (1809.03540v2)

Published 10 Sep 2018 in math.GT

Abstract: Khovanov homology, an invariant of links in $\mathbb{R}3$, is a graded homology theory that categorifies the Jones polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial. Asaeda, Przytycki and Sikora generalized this construction by defining a double graded homology theory that categorifies the Kauffman bracket skein module of links in $I$-bundles over surfaces, except for the surface $\mathbb{R}P2$, where the construction fails due to strange behaviour of links when projected to the non-orientable surface $\mathbb{R}P2$. This paper categorifies the missing case of the twisted $I$-bundle over $\mathbb{R}P2$, $\mathbb{R}P2$ \widetilde{\times} I \approx \rpt \setminus {\ast}$, by redefining the differential in the Khovanov chain complex in a suitable manner.

Summary

We haven't generated a summary for this paper yet.