Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Correlation Maximization Approach for Cross Domain Co-Embeddings (1809.03497v1)

Published 10 Sep 2018 in cs.IR, cs.LG, and stat.ML

Abstract: Although modern recommendation systems can exploit the structure in users' item feedback, most are powerless in the face of new users who provide no structure for them to exploit. In this paper we introduce ImplicitCE, an algorithm for recommending items to new users during their sign-up flow. ImplicitCE works by transforming users' implicit feedback towards auxiliary domain items into an embedding in the target domain item embedding space. ImplicitCE learns these embedding spaces and transformation function in an end-to-end fashion and can co-embed users and items with any differentiable similarity function. To train ImplicitCE we explore methods for maximizing the correlations between model predictions and users' affinities and introduce Sample Correlation Update, a novel and extremely simple training strategy. Finally, we show that ImplicitCE trained with Sample Correlation Update outperforms a variety of state of the art algorithms and loss functions on both a large scale Twitter dataset and the DBLP dataset.

Summary

We haven't generated a summary for this paper yet.