Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse-Consistent Deep Networks for Unsupervised Deformable Image Registration (1809.03443v1)

Published 10 Sep 2018 in cs.CV

Abstract: Deformable image registration is a fundamental task in medical image analysis, aiming to establish a dense and non-linear correspondence between a pair of images. Previous deep-learning studies usually employ supervised neural networks to directly learn the spatial transformation from one image to another, requiring task-specific ground-truth registration for model training. Due to the difficulty in collecting precise ground-truth registration, implementation of these supervised methods is practically challenging. Although several unsupervised networks have been recently developed, these methods usually ignore the inherent inverse-consistent property (essential for diffeomorphic mapping) of transformations between a pair of images. Also, existing approaches usually encourage the to-be-estimated transformation to be locally smooth via a smoothness constraint only, which could not completely avoid folding in the resulting transformation. To this end, we propose an Inverse-Consistent deep Network (ICNet) for unsupervised deformable image registration. Specifically, we develop an inverse-consistent constraint to encourage that a pair of images are symmetrically deformed toward one another, until both warped images are matched. Besides using the conventional smoothness constraint, we also propose an anti-folding constraint to further avoid folding in the transformation. The proposed method does not require any supervision information, while encouraging the diffeomoprhic property of the transformation via the proposed inverse-consistent and anti-folding constraints. We evaluate our method on T1-weighted brain magnetic resonance imaging (MRI) scans for tissue segmentation and anatomical landmark detection, with results demonstrating the superior performance of our ICNet over several state-of-the-art approaches for deformable image registration. Our code will be made publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jun Zhang (1008 papers)
Citations (97)

Summary

We haven't generated a summary for this paper yet.