Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Based Hybrid Precoding for MmWave MIMO-OFDM with Dynamic Subarray (1809.03378v1)

Published 10 Sep 2018 in cs.IT and math.IT

Abstract: Hybrid precoding design can be challenging for broadband millimeter-wave (mmWave) massive MIMO due to the frequency-flat analog precoder in radio frequency (RF). Prior broadband hybrid precoding work usually focuses on fully-connected array (FCA), while seldom considers the energy-efficient partially-connected subarray (PCS) including the fixed subarray (FS) and dynamic subarray (DS). Against this background, this paper proposes a machine learning based broadband hybrid precoding for mmWave massive MIMO with DS. Specifically, we first propose an optimal hybrid precoder based on principal component analysis (PCA) for the FS, whereby the frequency-flat RF precoder for each subarray is extracted from the principle component of the optimal frequency-selective precoders for fully-digital MIMO. Moreover, we extend the PCA-based hybrid precoding to DS, where a shared agglomerative hierarchical clustering (AHC) algorithm developed from machine learning is proposed to group the DS for improved spectral efficiency (SE). Finally, we investigate the energy efficiency (EE) of the proposed scheme for both passive and active antennas. Simulations have confirmed that the proposed scheme outperforms conventional schemes in both SE and EE.

Citations (15)

Summary

We haven't generated a summary for this paper yet.