Papers
Topics
Authors
Recent
Search
2000 character limit reached

Monte Carlo Tree Search for Verifying Reachability in Markov Decision Processes

Published 10 Sep 2018 in cs.LO | (1809.03299v1)

Abstract: The maximum reachability probabilities in a Markov decision process can be computed using value iteration (VI). Recently, simulation-based heuristic extensions of VI have been introduced, such as bounded real-time dynamic programming (BRTDP), which often manage to avoid explicit analysis of the whole state space while preserving guarantees on the computed result. In this paper, we introduce a new class of such heuristics, based on Monte Carlo tree search (MCTS), a technique celebrated in various machine-learning settings. We provide a spectrum of algorithms ranging from MCTS to BRTDP. We evaluate these techniques and show that for larger examples, where VI is no more applicable, our techniques are more broadly applicable than BRTDP with only a minor additional overhead.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.