Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric monoidal G-categories and their strictification (1809.03017v2)

Published 9 Sep 2018 in math.AT

Abstract: We give an operadic definition of a genuine symmetric monoidal G-category, and we prove that its classifying space is a genuine E_\infty G-space. We do this by developing some very general categorical coherence theory. We combine results of Corner and Gurski, Power, and Lack, to develop a strictification theory for pseudoalgebras over operads and monads. It specializes to strictify genuine symmetric monoidal G-categories to genuine permutative G-categories. All of our work takes place in a general internal categorical framework that has many quite different specializations. When G is a finite group, the theory here combines with previous work to generalize equivariant infinite loop space theory from strict space level input to considerably more general category level input. It takes genuine symmetric monoidal G-categories as input to an equivariant infinite loop space machine that gives genuine G-spectra as output.

Summary

We haven't generated a summary for this paper yet.