Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random walk on temporal networks with lasting edges (1809.02540v1)

Published 7 Sep 2018 in physics.soc-ph

Abstract: We consider random walks on dynamical networks where edges appear and disappear during finite time intervals. The process is grounded on three independent stochastic processes determining the walker's waiting-time, the up-time and down-time of edges activation. We first propose a comprehensive analytical and numerical treatment on directed acyclic graphs. Once cycles are allowed in the network, non-Markovian trajectories may emerge, remarkably even if the walker and the evolution of the network edges are governed by memoryless Poisson processes. We then introduce a general analytical framework to characterize such non-Markovian walks and validate our findings with numerical simulations.

Summary

We haven't generated a summary for this paper yet.