Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information-Theoretic Privacy in Distributed Average Consensus (1809.01794v3)

Published 6 Sep 2018 in cs.SY

Abstract: We present a distributed average consensus protocol that preserves the privacy of agents' inputs. Unlike the differential privacy mechanisms, the presented protocol does not affect the accuracy of the output. It is shown that the protocol preserves the information-theoretic privacy of the agents' inputs against colluding passive adversarial (or honest-but-curious) agents in the network, if the adversarial agents do not constitute a vertex cut in the underlying communication network. This implies that we can guarantee information-theoretic privacy of all the honest agents' inputs against $t$ arbitrary colluding passive adversarial agents if the network is $(t+1)$-connected. The protocol is constructed by composing a distributed privacy mechanism that we propose with any (non-private) distributed average consensus algorithm.

Citations (8)

Summary

We haven't generated a summary for this paper yet.