A Metric Sturm-Liouville theory in Two Dimensions (1809.01044v2)
Abstract: A central result of Sturm-Liouville theory (also called the Sturm-Hurwitz Theorem) states that if $\phi_k$ is a sequence of eigenfunctions of a second order differential operator on the interval $I \subset \mathbb{R}$, then any linear combination satisfies a uniform bound on the roots $$ # \left{x \in I:\sum_{k \geq n}{ a_k \phi_k(x)} = 0 \right} \geq n-1.$$ We provide a sharp (up to logarithmic factors) generalization to two dimensions: let $(M,g)$ be a compact two-dimensional manifold (with or without boundary), let $(\phi_k)$ denote the sequence of eigenfunctions of a uniformly elliptic operator $-\mbox{div}(a(\cdot) \nabla)$ (with Dirichlet or Neumann boundary conditions). Then, for any linear combination of eigenfunctions above a certain index $n$, $$ f = \sum_{k \geq n}{a_k \phi_k} ~ \mbox{we have} \quad \mathcal{H}1 \left{ x: f(x) = 0\right} \gtrsim_{} \frac{\sqrt{n}}{\sqrt{\log{n}}} \log \left(n \frac{|f|{L2(M)}}{|f|{L1(M)}} \right){-1/2} \frac{|f|{L1(M)}}{| f |{L{\infty}(M)}}.$$ Examples on $M=\mathbb{T}2$ and $M=\mathbb{S}2$ shows that this is optimal up to the logarithmic factors. The proof is using optimal transport and a new inequality for the Wasserstein metric $W_p$: if $f(x)dx$ and $g(x)dx$ are two absolutely continuous measures on a two-dimensional domain $M$ with continuous densities and the same total mass, then, for all $1 \leq p <\infty$, $$ W_p(f(x)dx, g(x) dx) \cdot \mathcal{H}1 \left{x \in M: f(x) = g(x) \right} \gtrsim_{M,p} \frac{|f-g|{L1(M)}{1+1/p}}{|f-g|{L{\infty}(M)}}.$$