Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Douglas-Rachford splitting algorithm for the sum of two operators (1809.00761v3)

Published 4 Sep 2018 in math.OC

Abstract: The Douglas-Rachford algorithm is a classical and powerful splitting method for minimizing the sum of two convex functions and, more generally, finding a zero of the sum of two maximally monotone operators. Although this algorithm is well understood when the involved operators are monotone or strongly monotone, the convergence theory for weakly monotone settings is far from being complete. In this paper, we propose an adaptive Douglas-Rachford splitting algorithm for the sum of two operators, one of which is strongly monotone while the other one is weakly monotone. With appropriately chosen parameters, the algorithm converges globally to a fixed point from which we derive a solution of the problem. When one operator is Lipschitz continuous, we prove global linear convergence, which sharpens recent known results.

Summary

We haven't generated a summary for this paper yet.