2000 character limit reached
Conditioning of partial nonuniform Fourier matrices with clustered nodes (1809.00658v2)
Published 3 Sep 2018 in math.NA, cs.IT, cs.NA, and math.IT
Abstract: We prove sharp lower bounds for the smallest singular value of a partial Fourier matrix with arbitrary "off the grid" nodes (equivalently, a rectangular Vandermonde matrix with the nodes on the unit circle), in the case when some of the nodes are separated by less than the inverse bandwidth. The bound is polynomial in the reciprocal of the so-called "super-resolution factor", while the exponent is controlled by the maximal number of nodes which are clustered together. As a corollary, we obtain sharp minimax bounds for the problem of sparse super-resolution on a grid under the partial clustering assumptions.