Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PathGAN: Visual Scanpath Prediction with Generative Adversarial Networks (1809.00567v1)

Published 3 Sep 2018 in cs.CV and cs.AI

Abstract: We introduce PathGAN, a deep neural network for visual scanpath prediction trained on adversarial examples. A visual scanpath is defined as the sequence of fixation points over an image defined by a human observer with its gaze. PathGAN is composed of two parts, the generator and the discriminator. Both parts extract features from images using off-the-shelf networks, and train recurrent layers to generate or discriminate scanpaths accordingly. In scanpath prediction, the stochastic nature of the data makes it very difficult to generate realistic predictions using supervised learning strategies, but we adopt adversarial training as a suitable alternative. Our experiments prove how PathGAN improves the state of the art of visual scanpath prediction on the iSUN and Salient360! datasets. Source code and models are available at https://imatge-upc.github.io/pathgan/

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com