Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The global rate of convergence for optimal tensor methods in smooth convex optimization (1809.00382v11)

Published 2 Sep 2018 in math.OC

Abstract: We consider convex optimization problems with the objective function having Lipshitz-continuous $p$-th order derivative, where $p\geq 1$. We propose a new tensor method, which closes the gap between the lower $O\left(\varepsilon{-\frac{2}{3p+1}} \right)$ and upper $O\left(\varepsilon{-\frac{1}{p+1}} \right)$ iteration complexity bounds for this class of optimization problems. We also consider uniformly convex functions, and show how the proposed method can be accelerated under this additional assumption. Moreover, we introduce a $p$-th order condition number which naturally arises in the complexity analysis of tensor methods under this assumption. Finally, we make a numerical study of the proposed optimal method and show that in practice it is faster than the best known accelerated tensor method. We also compare the performance of tensor methods for $p=2$ and $p=3$ and show that the 3rd-order method is superior to the 2nd-order method in practice.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com