Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $Z_pZ_{p^k}$-additive codes and their duality (1809.00008v2)

Published 31 Aug 2018 in cs.IT and math.IT

Abstract: In this paper, two different Gray-like maps from $Z_p\alpha\times Z_{pk}\beta$, where $p$ is prime, to $Z_pn$, $n={\alpha+\beta p{k-1}}$, denoted by $\phi$ and $\Phi$, respectively, are presented. We have determined the connection between the weight enumerators among the image codes under these two mappings. We show that if $C$ is a $Z_p Z_{pk}$-additive code, and $C\bot$ is its dual, then the weight enumerators of the image $p$-ary codes $\phi(C)$ and $\Phi(C\bot)$ are formally dual. This is a partial generalization of [On $Z_{2k}$-dual binary codes, arXiv:math/0509325], and the result is generalized to odd characteristic $p$ and mixed alphabet. Additionally, a construction of $1$-perfect additive codes in the mixed $Z_p Z_{p2}... Z_{pk}$ alphabet is given.

Citations (44)

Summary

We haven't generated a summary for this paper yet.