Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting the Shape of CAN Data for In-Vehicle Intrusion Detection (1808.10840v1)

Published 28 Aug 2018 in cs.CR

Abstract: Modern vehicles rely on scores of electronic control units (ECUs) broadcasting messages over a few controller area networks (CANs). Bereft of security features, in-vehicle CANs are exposed to cyber manipulation and multiple researches have proved viable, life-threatening cyber attacks. Complicating the issue, CAN messages lack a common mapping of functions to commands, so packets are observable but not easily decipherable. We present a transformational approach to CAN IDS that exploits the geometric properties of CAN data to inform two novel detectors--one based on distance from a learned, lower dimensional manifold and the other on discontinuities of the manifold over time. Proof-of-concept tests are presented by implementing a potential attack approach on a driving vehicle. The initial results suggest that (1) the first detector requires additional refinement but does hold promise; (2) the second detector gives a clear, strong indicator of the attack; and (3) the algorithms keep pace with high-speed CAN messages. As our approach is data-driven it provides a vehicle-agnostic IDS that eliminates the need to reverse engineer CAN messages and can be ported to an after-market plugin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zachariah Tyree (4 papers)
  2. Robert A. Bridges (34 papers)
  3. Frank L. Combs (3 papers)
  4. Michael R. Moore (1 paper)
Citations (17)

Summary

We haven't generated a summary for this paper yet.