Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hashing-Based-Estimators for Kernel Density in High Dimensions (1808.10530v1)

Published 30 Aug 2018 in cs.DS

Abstract: Given a set of points $P\subset \mathbb{R}{d}$ and a kernel $k$, the Kernel Density Estimate at a point $x\in\mathbb{R}{d}$ is defined as $\mathrm{KDE}{P}(x)=\frac{1}{|P|}\sum{y\in P} k(x,y)$. We study the problem of designing a data structure that given a data set $P$ and a kernel function, returns approximations to the kernel density of a query point in sublinear time. We introduce a class of unbiased estimators for kernel density implemented through locality-sensitive hashing, and give general theorems bounding the variance of such estimators. These estimators give rise to efficient data structures for estimating the kernel density in high dimensions for a variety of commonly used kernels. Our work is the first to provide data-structures with theoretical guarantees that improve upon simple random sampling in high dimensions.

Citations (92)

Summary

We haven't generated a summary for this paper yet.