Papers
Topics
Authors
Recent
2000 character limit reached

Conjugator lengths in hierarchically hyperbolic groups

Published 29 Aug 2018 in math.GR and math.GT | (1808.09604v3)

Abstract: In this paper, we establish upper bounds on the length of the shortest conjugator between pairs of infinite order elements in a wide class of groups. We obtain a general result which applies to all hierarchically hyperbolic groups, a class which includes mapping class groups, right-angled Artin groups, Burger--Mozes-type groups, most $3$--manifold groups, and many others. In this setting we establish a linear bound on the length of the shortest conjugator for any pair of conjugate Morse elements. For a subclass of these groups, including, in particular, all virtually compact special groups, we prove a sharper result by obtaining a linear bound on the length of the shortest conjugator between a suitable power of any pair of conjugate infinite order elements.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.