Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lipschitz regularized Deep Neural Networks generalize and are adversarially robust (1808.09540v4)

Published 28 Aug 2018 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: In this work we study input gradient regularization of deep neural networks, and demonstrate that such regularization leads to generalization proofs and improved adversarial robustness. The proof of generalization does not overcome the curse of dimensionality, but it is independent of the number of layers in the networks. The adversarial robustness regularization combines adversarial training, which we show to be equivalent to Total Variation regularization, with Lipschitz regularization. We demonstrate empirically that the regularized models are more robust, and that gradient norms of images can be used for attack detection.

Citations (55)

Summary

We haven't generated a summary for this paper yet.