Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectrum-Adapted Polynomial Approximation for Matrix Functions (1808.09506v1)

Published 28 Aug 2018 in cs.NA and math.NA

Abstract: We propose and investigate two new methods to approximate $f({\bf A}){\bf b}$ for large, sparse, Hermitian matrices ${\bf A}$. The main idea behind both methods is to first estimate the spectral density of ${\bf A}$, and then find polynomials of a fixed order that better approximate the function $f$ on areas of the spectrum with a higher density of eigenvalues. Compared to state-of-the-art methods such as the Lanczos method and truncated Chebyshev expansion, the proposed methods tend to provide more accurate approximations of $f({\bf A}){\bf b}$ at lower polynomial orders, and for matrices ${\bf A}$ with a large number of distinct interior eigenvalues and a small spectral width.

Citations (5)

Summary

We haven't generated a summary for this paper yet.