Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The dispersion time of random walks on finite graphs (1808.09219v2)

Published 28 Aug 2018 in cs.DM, math.CO, and math.PR

Abstract: We study two random processes on an $n$-vertex graph inspired by the internal diffusion limited aggregation (IDLA) model. In both processes $n$ particles start from an arbitrary but fixed origin. Each particle performs a simple random walk until first encountering an unoccupied vertex, and at which point the vertex becomes occupied and the random walk terminates. In one of the processes, called \textit{Sequential-IDLA}, only one particle moves until settling and only then does the next particle start whereas in the second process, called \textit{Parallel-IDLA}, all unsettled particles move simultaneously. Our main goal is to analyze the so-called dispersion time of these processes, which is the maximum number of steps performed by any of the $n$ particles. In order to compare the two processes, we develop a coupling which shows the dispersion time of the Parallel-IDLA stochastically dominates that of the Sequential-IDLA; however, the total number of steps performed by all particles has the same distribution in both processes. This coupling also gives us that dispersion time of Parallel-IDLA is bounded in expectation by dispersion time of the Sequential-IDLA up to a multiplicative $\log n$ factor. Moreover, we derive asymptotic upper and lower bound on the dispersion time for several graph classes, such as cliques, cycles, binary trees, $d$-dimensional grids, hypercubes and expanders. Most of our bounds are tight up to a multiplicative constant.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Alexandre Stauffer (33 papers)
  2. Thomas Sauerwald (34 papers)
  3. John Sylvester (30 papers)
  4. Nicolas Rivera (7 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.