Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Which Emoji Talks Best for My Picture? (1808.08891v1)

Published 27 Aug 2018 in cs.CV

Abstract: Emojis have evolved as complementary sources for expressing emotion in social-media platforms where posts are mostly composed of texts and images. In order to increase the expressiveness of the social media posts, users associate relevant emojis with their posts. Incorporating domain knowledge has improved machine understanding of text. In this paper, we investigate whether domain knowledge for emoji can improve the accuracy of emoji recommendation task in case of multimedia posts composed of image and text. Our emoji recommendation can suggest accurate emojis by exploiting both visual and textual content from social media posts as well as domain knowledge from Emojinet. Experimental results using pre-trained image classifiers and pre-trained word embedding models on Twitter dataset show that our results outperform the current state-of-the-art by 9.6\%. We also present a user study evaluation of our recommendation system on a set of images chosen from MSCOCO dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Anurag Illendula (6 papers)
  2. Kv Manohar (2 papers)
  3. Manish Reddy Yedulla (2 papers)
Citations (7)