Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Properties of $β$-Cesàro operators on $α$-Bloch space (1808.08844v2)

Published 27 Aug 2018 in math.FA

Abstract: For each $ \alpha > 0 $, the $\alpha$-Bloch space is consisting of all analytic functions $f$ on the unit disk satisfying $ \sup_{|z|<1} (1-|z|2)\alpha |f'(z)| < + \infty.$ In this paper, we consider the following complex integral operator, namely the $\beta$-Ces`{a}ro operator \begin{equation} C_\beta(f)(z)=\int_{0}{z}\frac{f(w)}{w(1-w){\beta}}dw \nonumber \end{equation} and its generalization, acting from the $\alpha$-Bloch space to itself, where $f(0)=0$ and $\beta\in\mathbb{R}$. We investigate the boundedness and compactness of the $\beta$-Ces`{a}ro operators and their generalization. Also we calculate the essential norm and spectrum of these operators.

Summary

We haven't generated a summary for this paper yet.