Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When facts fail: Bias, polarisation and truth in social networks (1808.08524v2)

Published 26 Aug 2018 in physics.soc-ph and cs.SI

Abstract: Online social networks provide users with unprecedented opportunities to engage with diverse opinions. At the same time, they enable confirmation bias on large scales by empowering individuals to self-select narratives they want to be exposed to. A precise understanding of such tradeoffs is still largely missing. We introduce a social learning model where most participants in a network update their beliefs unbiasedly based on new information, while a minority of participants reject information that is incongruent with their preexisting beliefs. This simple mechanism generates permanent opinion polarization and cascade dynamics, and accounts for the aforementioned tradeoff between confirmation bias and social connectivity through analytic results. We investigate the model's predictions empirically using US county-level data on the impact of Internet access on the formation of beliefs about global warming. We conclude by discussing policy implications of our model, highlighting the downsides of debunking and suggesting alternative strategies to contrast misinformation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.