Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some inequalities for interpolational operator means (1808.08342v1)

Published 25 Aug 2018 in math.FA

Abstract: Using the properties of geometric mean, we shall show for any $0\le \alpha ,\beta \le 1$, [f\left( A{{\nabla }{\alpha }}B \right)\le f\left( \left( A{{\nabla }{\alpha }}B \right){{\nabla }{\beta }}A \right){{\sharp}{\alpha }}f\left( \left( A{{\nabla }{\alpha }}B \right){{\nabla }{\beta }}B \right)\le f\left( A \right){{\sharp}{\alpha }}f\left( B \right)] whenever $f$ is a non-negative operator log-convex function, $A,B\in \mathcal{B}\left( \mathcal{H} \right)$ are positive operators, and $0\le \alpha ,\beta \le 1$. As an application of this operator mean inequality, we present several refinements of the Aujla subadditive inequality for operator monotone decreasing functions. Also, in a similar way, we consider some inequalities of Ando's type. Among other things, it is shown that if $\Phi $ is a positive linear map, then [\Phi \left( A{{\sharp}{\alpha }}B \right)\le \Phi \left( \left( A{{\sharp}{\alpha }}B \right){{\sharp}{\beta }}A \right){{\sharp}{\alpha }}\Phi \left( \left( A{{\sharp}{\alpha }}B \right){{\sharp}{\beta }}B \right)\le \Phi \left( A \right){{\sharp}{\alpha }}\Phi \left( B \right).]

Summary

We haven't generated a summary for this paper yet.