Caffarelli-Kohn-Nirenberg inequalities on Besov and Triebel-Lizorkin-type spaces (1808.08227v6)
Abstract: We present some Caffarelli-Kohn-Nirenberg-type inequalities on Herz-type Besov-Triebel-Lizorkin spaces, Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. More Precisely, we investigate the inequalities \begin{equation*} \big|f\big|{\dot{k}{v,\sigma }{\alpha_{1},r}}\leq c\big|f\big|{\dot{K}{u}{\alpha_{2},\delta }}{1-\theta }\big|f\big|{\dot{K}{p}{\alpha_{3},\delta_{1}}A_{\beta }{s}}{\theta }, \end{equation*} and \begin{equation*} \big|f\big|{\mathcal{E}{p,2,u}{\sigma }}\leq c\big|f\big|{\mathcal{M}{\mu }{\delta }}{1-\theta }\big|f\big|{\mathcal{N}{q,\beta ,v}{s}}{\theta }, \end{equation*} with some appropriate assumptions on the parameters, where $\dot{k}{v,\sigma }{\alpha{1},r}$ is the Herz-type Bessel potential spaces, which are just the Sobolev spaces if $\alpha_{1}=0,1<r=v<\infty $ and $% \sigma \in \mathbb{N}{0}$, and $\dot{K}{p}{\alpha_{3},\delta_{1}}A_{\beta }{s}$ are Besov or Triebel-Lizorkin spaces if $\alpha_{3}=0$ and$\ \delta_{1}=p$. To do these, we study when distributions belonging to these spaces can be interpreted as functions in $L_{\mathrm{loc}}{1}$. The usual Littlewood-Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sobolev inequalities are given.