Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Green kernel asymptotics for two-dimensional random walks under random conductances (1808.08126v3)

Published 24 Aug 2018 in math.PR

Abstract: We consider random walks among random conductances on $\mathbb{Z}2$ and establish precise asymptotics for the associated potential kernel and the Green's function of the walk killed upon exiting balls. The result is proven for random walks on i.i.d. supercritical percolation clusters among ergodic degenerate conductances satisfying a moment condition. We also provide a similar result for the time-dynamic random conductance model. As an application we present a scaling limit for the variances in the Ginzburg-Landau $\nabla \phi$-interface model.

Summary

We haven't generated a summary for this paper yet.