Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Predictability of non-CGM Diabetes Data for Personalized Recommendation (1808.07380v5)

Published 19 Aug 2018 in cs.CY, cs.LG, and stat.ML

Abstract: With continuous glucose monitoring (CGM), data-driven models on blood glucose prediction have been shown to be effective in related work. However, such (CGM) systems are not always available, e.g., for a patient at home. In this work, we conduct a study on 9 patients and examine the online predictability of data-driven (aka. machine learning) based models on patient-level blood glucose prediction; with measurements are taken only periodically (i.e., after several hours). To this end, we propose several post-prediction methods to account for the noise nature of these data, that marginally improves the performance of the end system.

Citations (1)

Summary

We haven't generated a summary for this paper yet.