Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blocks with normal abelian defect and abelian p' inertial quotient (1808.07317v1)

Published 22 Aug 2018 in math.RT and math.GR

Abstract: Let $k$ be an algebraically closed field of characteristic $p$, and let $\mathcal{O}$ be either $k$ or its ring of Witt vectors $W(k)$. Let $G$ a finite group and $B$ a block of $\mathcal{O}G$ with normal abelian defect group and abelian $p'$ inertial quotient. We show that $B$ is isomorphic to its second Frobenius twist. This is motivated by the fact that bounding Frobenius numbers is one of the key steps towards Donovan's conjecture. For $\mathcal{O}=k$, we give an explicit description of the basic algebra of $B$ as a quiver with relations. It is a quantised version of the group algebra of the semidirect product $P\rtimes L$.

Summary

We haven't generated a summary for this paper yet.