Papers
Topics
Authors
Recent
2000 character limit reached

Quantitative contraction rates for Markov chains on general state spaces

Published 21 Aug 2018 in math.PR | (1808.07033v1)

Abstract: We investigate the problem of quantifying contraction coefficients of Markov transition kernels in Kantorovich ($L1$ Wasserstein) distances. For diffusion processes, relatively precise quantitative bounds on contraction rates have recently been derived by combining appropriate couplings with carefully designed Kantorovich distances. In this paper, we partially carry over this approach from diffusions to Markov chains. We derive quantitative lower bounds on contraction rates for Markov chains on general state spaces that are powerful if the dynamics is dominated by small local moves. For Markov chains on $\mathbb{Rd}$ with isotropic transition kernels, the general bounds can be used efficiently together with a coupling that combines maximal and reflection coupling. The results are applied to Euler discretizations of stochastic differential equations with non-globally contractive drifts, and to the Metropolis adjusted Langevin algorithm for sampling from a class of probability measures on high dimensional state spaces that are not globally log-concave.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.