Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deriving ventilation imaging from 4DCT by deep convolutional neural network (1808.06982v1)

Published 21 Aug 2018 in physics.med-ph and eess.IV

Abstract: Purpose: Functional imaging is emerging as an important tool for lung cancer treatment planning and evaluation. Compared with traditional methods such as nuclear medicine ventilation-perfusion (VQ), positron emission tomography (PET), single photon emission computer tomography (SPECT), or magnetic resonance imaging (MRI), which use contrast agents to form 2D or 3D functional images, ventilation imaging obtained from 4DCT lung images is convenient and cost-effective because of its availability during radiation treatment planning. Current methods of obtaining ventilation images from 4DCT lung images involve deformable image registration (DIR) and a density (HU) change-based algorithm (DIR/HU); therefore the resulting ventilation images are sensitive to the selection of DIR algorithms. Methods: We propose a deep convolutional neural network (CNN)-based method to derive the ventilation images from 4DCT directly without explicit DIR, thereby improving consistency and accuracy of ventilation images. A total of 82 sets of 4DCT and ventilation images from patients with lung cancer were studied using this method. Results: The predicted images were comparable to the label images of the test data. The similarity index and correlation coefficient averaged over the ten-fold cross validation were 0.883+-0.034 and 0.878+-0.028, respectively. Conclusions: The results demonstrate that deep CNN can generate ventilation imaging from 4DCT without explicit deformable image registration, reducing the associated uncertainty.

Citations (22)

Summary

We haven't generated a summary for this paper yet.