Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree (1808.06655v1)

Published 20 Aug 2018 in math.AC and cs.CC

Abstract: In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if $f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}]$ is a polynomial with $s$ monomials, with individual degrees of its variables bounded by $d$, then $f$ can be deterministically factored in time $s{\mathrm{poly}(d) \log n}$. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of $d=1$ and $d=2$, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if $f$ is an $s$-sparse polynomial in $n$ variables, with individual degrees of its variables bounded by $d$, then the sparsity of each factor of $f$ is bounded by $s{O({d2\log{n}})}$. This is the first nontrivial bound on factor sparsity for $d>2$. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials.

Citations (17)

Summary

We haven't generated a summary for this paper yet.