Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

predictSLUMS: A new model for identifying and predicting informal settlements and slums in cities from street intersections using machine learning (1808.06470v1)

Published 14 Aug 2018 in cs.CY, cs.LG, and stat.ML

Abstract: Identifying current and future informal regions within cities remains a crucial issue for policymakers and governments in developing countries. The delineation process of identifying such regions in cities requires a lot of resources. While there are various studies that identify informal settlements based on satellite image classification, relying on both supervised or unsupervised machine learning approaches, these models either require multiple input data to function or need further development with regards to precision. In this paper, we introduce a novel method for identifying and predicting informal settlements using only street intersections data, regardless of the variation of urban form, number of floors, materials used for construction or street width. With such minimal input data, we attempt to provide planners and policy-makers with a pragmatic tool that can aid in identifying informal zones in cities. The algorithm of the model is based on spatial statistics and a machine learning approach, using Multinomial Logistic Regression (MNL) and Artificial Neural Networks (ANN). The proposed model relies on defining informal settlements based on two ubiquitous characteristics that these regions tend to be filled in with smaller subdivided lots of housing relative to the formal areas within the local context, and the paucity of services and infrastructure within the boundary of these settlements that require relatively bigger lots. We applied the model in five major cities in Egypt and India that have spatial structures in which informality is present. These cities are Greater Cairo, Alexandria, Hurghada and Minya in Egypt, and Mumbai in India. The predictSLUMS model shows high validity and accuracy for identifying and predicting informality within the same city the model was trained on or in different ones of a similar context.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mohamed R. Ibrahim (9 papers)
  2. Helena Titheridge (1 paper)
  3. Tao Cheng (24 papers)
  4. James Haworth (15 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.