Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A unified Framework for Robust Modelling of Financial Markets in discrete time (1808.06430v2)

Published 20 Aug 2018 in q-fin.MF and math.PR

Abstract: We unify and establish equivalence between the pathwise and the quasi-sure approaches to robust modelling of financial markets in discrete time. In particular, we prove a Fundamental Theorem of Asset Pricing and a Superhedging Theorem, which encompass the formulations of [Bouchard, B., & Nutz, M. (2015). Arbitrage and duality in nondominated discrete-time models. The Annals of Applied Probability, 25(2), 823-859] and [Burzoni, M., Frittelli, M., Hou, Z., Maggis, M., & Obloj, J. (2019). Pointwise arbitrage pricing theory in discrete time. Mathematics of Operations Research]. In bringing the two streams of literature together, we also examine and relate their many different notions of arbitrage. We also clarify the relation between robust and classical $\mathbb{P}$-specific results. Furthermore, we prove when a superhedging property w.r.t. the set of martingale measures supported on a set of paths $\Omega$ may be extended to a pathwise superhedging on $\Omega$ without changing the superhedging price.

Summary

We haven't generated a summary for this paper yet.