Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solvability of Equations by Quadratures and Newton's Theorem (1808.06328v2)

Published 20 Aug 2018 in math.AG

Abstract: Picard--Vessiot theorem (1910) provides a necessary and sufficient condition for solvability of linear differential equations of order $n$ by quadratures in terms of its Galois group. It is based on the differential Galois theory and is rather involved. J.Liouville in 1839 found an elementary criterium for such solvability for $n=2$. J.F.Ritt simplified Liouville's theorem (1948). In 1973 M. Rosenlicht proved a similar criterium for arbitrary $n$. Rosenlicht work relies on the valuation theory and is not elementary. In these notes we show that the elementary Liouville--Ritt method based on developing solutions in Puiseux series as functions of a parameter works smoothly for arbitrary $n$ and proves the same criterium.

Summary

We haven't generated a summary for this paper yet.