Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the mixing time of the Diaconis--Gangolli random walk on contingency tables over $\mathbb{Z}/ q \mathbb{Z}$ (1808.06157v1)

Published 19 Aug 2018 in math.PR and math.CO

Abstract: The Diaconis--Gangolli random walk is an algorithm that generates an almost uniform random graph with prescribed degrees. In this paper, we study the mixing time of the Diaconis--Gangolli random walk restricted on $n\times n$ contingency tables over $\mathbb{Z}/q\mathbb{Z}$. We prove that the random walk exhibits cutoff at $\frac{n2}{4(1- \cos{\frac{2 \pi}{q}})} \log n, $ when $\log q=o\left (\frac{\sqrt{\log n}}{\log \log n}\right )$.

Summary

We haven't generated a summary for this paper yet.