Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical modeling for adaptive trait evolution in randomly evolving environment (1808.05878v1)

Published 17 Aug 2018 in stat.ME

Abstract: In past decades, Gaussian processes has been widely applied in studying trait evolution using phylogenetic comparative analysis. In particular, two members of Gaussian processes: Brownian motion and Ornstein-Uhlenbeck process, have been frequently used to describe continuous trait evolution. Under the assumption of adaptive evolution, several models have been created around Ornstein-Uhlenbeck process where the optimum $\thetay_t$ of a single trait $y_t$ is influenced with predictor $x_t$. Since in general the dynamics of rate of evolution $\tauy_t$ of trait could adopt a pertinent process, in this work we extend models of adaptive evolution by considering the rate of evolution $\tau_ty$ following the Cox-Ingersoll-Ross (CIR) process. We provide a heuristic Monte Carlo simulation scheme to simulate trait along the phylogeny as a structure of dependence among species. We add a framework to incorporate multiple regression with interaction between optimum of the trait and its potential predictors. Since the likelihood function for our models are intractable, we propose the use of Approximate Bayesian Computation (ABC) for parameter estimation and inference. Simulation as well as empirical study using the proposed models are also performed and carried out to validate our models and for practical applications.

Summary

We haven't generated a summary for this paper yet.