Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning Enhanced Common Spatial Pattern Filtering for Brain Computer Interfaces (BCIs): Overview and a New Approach (1808.05853v1)

Published 8 Aug 2018 in cs.HC, cs.CV, and cs.LG

Abstract: The electroencephalogram (EEG) is the most widely used input for brain computer interfaces (BCIs), and common spatial pattern (CSP) is frequently used to spatially filter it to increase its signal-to-noise ratio. However, CSP is a supervised filter, which needs some subject-specific calibration data to design. This is time-consuming and not user-friendly. A promising approach for shortening or even completely eliminating this calibration session is transfer learning, which leverages relevant data or knowledge from other subjects or tasks. This paper reviews three existing approaches for incorporating transfer learning into CSP, and also proposes a new transfer learning enhanced CSP approach. Experiments on motor imagery classification demonstrate their effectiveness. Particularly, our proposed approach achieves the best performance when the number of target domain calibration samples is small.

Citations (20)

Summary

We haven't generated a summary for this paper yet.