Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supersingular irreducible symplectic varieties (1808.05851v5)

Published 17 Aug 2018 in math.AG

Abstract: We study symplectic varieties defined over fields of positive characteristics, especially the supersingular ones, generalizing the theory of supersingular K3 surfaces. In this work, we are mainly interested in the following two types of symplectic varieties over an algebraically closed field of positive characteristic, under natural numerical conditions: (1) smooth moduli spaces of sheaves on K3 surfaces and (2) smooth Albanese fibers of moduli spaces of sheaves on abelian surfaces. Several natural definitions of the supersingularity for symplectic varieties are discussed, which are proved to be equivalent in both cases (1) and (2). Their equivalence is conjectured in general. On the geometric aspect, we conjecture that unirationality characterizes supersingularity for symplectic varieties. Such an equivalence is established in case (1), assuming the same is true for K3 surfaces. In case (2), we show that the rational chain connectedness is equivalent to supersingularity. On the motivic aspect, we conjecture that the algebraic cycles on supersingular symplectic varieties should be much simpler than their complex counterparts: its rational Chow motive is of supersingular abelian type, the rational Chow ring is representable and satisfies the Bloch--Beilinson conjecture and Beauville's splitting property. As evidences, we prove all these conjectures on algebraic cycles for supersingular varieties in both cases (1) and (2).

Summary

We haven't generated a summary for this paper yet.