Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Neural Networks based Intra Prediction for HEVC (1808.05734v1)

Published 17 Aug 2018 in cs.CV

Abstract: Traditional intra prediction methods for HEVC rely on using the nearest reference lines for predicting a block, which ignore much richer context between the current block and its neighboring blocks and therefore cause inaccurate prediction especially when weak spatial correlation exists between the current block and the reference lines. To overcome this problem, in this paper, an intra prediction convolutional neural network (IPCNN) is proposed for intra prediction, which exploits the rich context of the current block and therefore is capable of improving the accuracy of predicting the current block. Meanwhile, the predictions of the three nearest blocks can also be refined. To the best of our knowledge, this is the first paper that directly applies CNNs to intra prediction for HEVC. Experimental results validate the effectiveness of applying CNNs to intra prediction and achieved significant performance improvement compared to traditional intra prediction methods.

Citations (62)

Summary

We haven't generated a summary for this paper yet.