Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization of MIMO Device-to-Device Networks via Matrix Fractional Programming: A Minorization-Maximization Approach (1808.05678v2)

Published 16 Aug 2018 in cs.IT and math.IT

Abstract: Interference management is a fundamental issue in device-to-device (D2D) communications whenever the transmitter-and-receiver pairs are located in close proximity and frequencies are fully reused, so active links may severely interfere with each other. This paper devises an optimization strategy named FPLinQ to coordinate the link scheduling decisions among the interfering links, along with power control and beamforming. The key enabler is a novel optimization method called matrix fractional programming (FP) that generalizes previous scalar and vector forms of FP in allowing multiple data streams per link. From a theoretical perspective, this paper provides a deeper understanding of FP by showing a connection to the minorization-maximization (MM) algorithm. From an application perspective, this paper shows that as compared to the existing methods for coordinating scheduling in the D2D network, such as FlashLinQ, ITLinQ, and ITLinQ+, the proposed FPLinQ approach is more general in allowing multiple antennas at both the transmitters and the receivers, and further in allowing arbitrary and multiple possible associations between the devices via matching. Numerical results show that FPLinQ significantly outperforms the previous state-of-the-art in a typical D2D communication environment.

Citations (62)

Summary

We haven't generated a summary for this paper yet.