Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal operators and decoupling for $Λ(p)$ Cantor measures (1808.05657v2)

Published 16 Aug 2018 in math.CA

Abstract: For $2\leq p<\infty$, $\alpha'>2/p$, and $\delta>0$, we construct Cantor-type measures on $\mathbb{R}$ supported on sets of Hausdorff dimension $\alpha<\alpha'$ for which the associated maximal operator is bounded from $Lp_\delta (\mathbb{R})$ to $Lp(\mathbb{R})$. Maximal theorems for fractal measures on the line were previously obtained by Laba and Pramanik. The result here is weaker in that we are not able to obtain $Lp$ estimates; on the other hand, our approach allows Cantor measures that are self-similar, have arbitrarily low dimension $\alpha>0$, and have no Fourier decay. The proof is based on a decoupling inequality similar to that of Laba and Wang.

Summary

We haven't generated a summary for this paper yet.