Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the Temporal Behavior of Real-World Person Re-Identification (1808.05499v1)

Published 16 Aug 2018 in cs.CV

Abstract: Designing real-world person re-identification (re-id) systems requires attention to operational aspects not typically considered in academic research. Typically, the probe image or image sequence is matched to a gallery set with a fixed candidate list. On the other hand, in real-world applications of re-id, we would search for a person of interest in a gallery set that is continuously populated by new candidates over time. A key question of interest for the operator of such a system is: how long is a correct match to a probe likely to remain in a rank-k shortlist of candidates? In this paper, we propose to distill this information into what we call a Rank Persistence Curve (RPC), which unlike a conventional cumulative match characteristic (CMC) curve helps directly compare the temporal performance of different re-id algorithms. To carefully illustrate the concept, we collected a new multi-shot person re-id dataset called RPIfield. The RPIfield dataset is constructed using a network of 12 cameras with 112 explicitly time-stamped actor paths among about 4000 distractors. We then evaluate the temporal performance of different re-id algorithms using the proposed RPCs using single and pairwise camera videos from RPIfield, and discuss considerations for future research.

Citations (5)

Summary

We haven't generated a summary for this paper yet.