Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Trudinger-Moser inequality for conical metric in the unit ball (1808.05316v1)

Published 16 Aug 2018 in math.AP

Abstract: In this note, we prove a Trudinger-Moser inequality for conical metric in the unit ball. Precisely, let $\mathbb{B}$ be the unit ball in $\mathbb{R}N$ $(N\geq 2)$, $p>1$, $g=|x|{\frac{2p}{N}\beta}(dx_12+\cdots+dx_N2)$ be a conical metric on $\mathbb{B}$, and $\lambda_p(\mathbb{B})=\inf\left{\int_\mathbb{B}|\nabla u|Ndx: u\in W_0{1,N}(\mathbb{B}),\,\int_\mathbb{B}|u|pdx=1\right}$. We prove that for any $\beta\geq 0$ and $\alpha<(1+\frac{p}{N}\beta){N-1+\frac{N}{p}}\lambda_p(\mathbb{B})$, there exists a constant $C$ such that for all radially symmetric functions $u\in W_0{1,N}(\mathbb{B})$ with $\int_\mathbb{B}|\nabla u|Ndx-\alpha(\int_\mathbb{B}|u|p|x|{p\beta}dx){N/p}\leq 1$, there holds $$\int_\mathbb{B}e{\alpha_N(1+\frac{p}{N}\beta)|u|{\frac{N}{N-1}}}|x|{p\beta}dx\leq C,$$ where $|x|{p\beta}dx=dv_g$, $\alpha_N=N\omega_{N-1}{1/(N-1)}$, $\omega_{N-1}$ is the area of the unit sphere in $\mathbb{R}N$; moreover, extremal functions for such inequalities exist. The case $p=N$, $-1<\beta<0$ and $\alpha=0$ was considered by Adimurthi-Sandeep \cite{A-S}, while the case $p=N=2$, $\beta\geq 0$ and $\alpha=0$ was studied by de Figueiredo-do \'O-dos Santos \cite{F-do-dos}.

Summary

We haven't generated a summary for this paper yet.