Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

PFCNN: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames (1808.04952v2)

Published 15 Aug 2018 in cs.CV, cs.CG, cs.GR, and cs.LG

Abstract: Surface meshes are widely used shape representations and capture finer geometry data than point clouds or volumetric grids, but are challenging to apply CNNs directly due to their non-Euclidean structure. We use parallel frames on surface to define PFCNNs that enable effective feature learning on surface meshes by mimicking standard convolutions faithfully. In particular, the convolution of PFCNN not only maps local surface patches onto flat tangent planes, but also aligns the tangent planes such that they locally form a flat Euclidean structure, thus enabling recovery of standard convolutions. The alignment is achieved by the tool of locally flat connections borrowed from discrete differential geometry, which can be efficiently encoded and computed by parallel frame fields. In addition, the lack of canonical axis on surface is handled by sampling with the frame directions. Experiments show that for tasks including classification, segmentation and registration on deformable geometric domains, as well as semantic scene segmentation on rigid domains, PFCNNs achieve robust and superior performances without using sophisticated input features than state-of-the-art surface based CNNs.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.