Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity of Shift Spaces on Semigroups (1808.04925v1)

Published 14 Aug 2018 in math.DS and cs.CC

Abstract: Let $G=\left\langle S|R_{A}\right\rangle $ be a semigroup with generating set $ S$ and equivalences $R_{A}$ among $S$ determined by a matrix $A$. This paper investigates the complexity of $G$-shift spaces by yielding the topological entropies. After revealing the existence of topological entropy of $G$-shift of finite type ($G$-SFT), the calculation of topological entropy of $G$-SFT is equivalent to solving a system of nonlinear recurrence equations. The complete characterization of topological entropies of $G$-SFTs on two symbols is addressed, which extends [Ban and Chang, arXiv:1803.03082] in which $G$ is a free semigroup.

Citations (4)

Summary

We haven't generated a summary for this paper yet.