Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A penalty scheme for monotone systems with interconnected obstacles: convergence and error estimates (1808.04747v2)

Published 14 Aug 2018 in math.NA, cs.NA, and math.OC

Abstract: We present a novel penalty approach for a class of quasi-variational inequalities (QVIs) involving monotone systems and interconnected obstacles. We show that for any given positive switching cost, the solutions of the penalized equations converge monotonically to those of the QVIs. We estimate the penalization errors and are able to deduce that the optimal switching regions are constructed exactly. We further demonstrate that as the switching cost tends to zero, the QVI degenerates into an equation of HJB type, which is approximated by the penalized equation at the same order (up to a log factor) as that for positive switching cost. Numerical experiments on optimal switching problems are presented to illustrate the theoretical results and to demonstrate the effectiveness of the method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.