Papers
Topics
Authors
Recent
2000 character limit reached

Adversarial Neural Networks for Cross-lingual Sequence Tagging

Published 14 Aug 2018 in cs.CL | (1808.04736v1)

Abstract: We study cross-lingual sequence tagging with little or no labeled data in the target language. Adversarial training has previously been shown to be effective for training cross-lingual sentence classifiers. However, it is not clear if language-agnostic representations enforced by an adversarial language discriminator will also enable effective transfer for token-level prediction tasks. Therefore, we experiment with different types of adversarial training on two tasks: dependency parsing and sentence compression. We show that adversarial training consistently leads to improved cross-lingual performance on each task compared to a conventionally trained baseline.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.