Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Feature Selection Method for High Impedance Fault Detection (1808.04454v1)

Published 13 Aug 2018 in eess.SP and cs.SY

Abstract: High impedance fault (HIF) has been a challenging task to detect in distribution networks. On one hand, although several types of HIF models are available for HIF study, they are still not exhibiting satisfactory fault waveforms. On the other hand, utilizing historical data has been a trend recently for using machine learning methods to improve HIF detection. Nonetheless, most proposed methodologies address the HIF issue starting with investigating a limited group of features and can hardly provide a practical and implementable solution. This paper, however, proposes a systematic design of feature extraction, based on an HIF detection and classification method. For example, features are extracted according to when, how long, and what magnitude the fault events create. Complementary power expert information is also integrated into the feature pools. Subsequently, we propose a ranking procedure in the feature pool for balancing the information gain and the complexity to avoid over-fitting. For implementing the framework, we create an HIF detection logic from a practical perspective. Numerical methods show the proposed HIF detector has very high dependability and security performance under multiple fault scenarios comparing with other traditional methods.

Citations (74)

Summary

We haven't generated a summary for this paper yet.